Bayesian Semiparametric Inference in Multiple Equation Models
نویسندگان
چکیده
This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure valid posterior inference despite the fact that the number of parameters is greater than the number of observations. We derive an empirical Bayesian approach that allows us to estimate the prior smoothing hyperparameters from the data. An advantage of our semiparametric model is that it is written as a seemingly unrelated regressions model with independent Normal-Wishart prior. Since this model is a common one, textbook results for posterior inference, model comparison, prediction and posterior computation are immediately available. We use this model in an application involving a two-equation structural model drawn from the labor and returns to schooling literatures.
منابع مشابه
Semiparametric Bayesian Inference in Multiple Equation Models
This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure ...
متن کاملBayesian Elastic-Net and Fused Lasso for Semiparametric Structural Equation Models
SUMMARY: Structural equation models are well-developed statistical tools for multivariate data with latent variables. Recently, much attention has been given to developing structural equation models that account for nonlinear relationships between the endogenous latent variables, the covariates, and the exogenous latent variables. [Guo et al. (2012)], developed a semiparametric structural equat...
متن کاملBayesian lasso for semiparametric structural equation models.
There has been great interest in developing nonlinear structural equation models and associated statistical inference procedures, including estimation and model selection methods. In this paper a general semiparametric structural equation model (SSEM) is developed in which the structural equation is composed of nonparametric functions of exogenous latent variables and fixed covariates on a set ...
متن کاملLectures on Nonparametric Bayesian Statistics
Notes for the course by Bas Kleijn, Aad van der Vaart, Harry van Zanten (Text partly extracted from a forthcoming book by S. Ghosal and A. van der Vaart) version 4-12-2012 UNDER CONSTRUCTION 1 Introduction Why adopt the nonparametric Bayesian approach for inference? The answer lies in the simultaneous preference for nonparametric modeling and desire to follow a Bayesian procedure. Nonparametric...
متن کاملBayesian semiparametric multi-state models
Multi-state models provide a unified framework for the description of the evolution of discrete phenomena in continuous time. One particular example are Markov processes which can be characterised by a set of time-constant transition intensities between the states. In this paper, we will extend such parametric approaches to semiparametric models with flexible transition intensities based on Bay...
متن کامل